Static Program Analysis using
Abstract Interpretation

Arnaud Venet Guillaume Brat
venet@email .arc.nasa.gov bratfemail . arc.nasa.gov

ZRTI. a2 TN axx

NASA Ames Research Center
Moffett Field, CA 94035

Kestrel Technoloov
rel 10108V

Introduction

Static Program Analysis

Static program analysis consists of automatically
discovering properties of a program that hold for
all possible execution paths of the program.

Static program analysis is not

e Testing: 1
some execution paths

» Model checking: automatically checking a
property for all execution paths

g a property for

&

Program Analysis for what?

» Optimizing compilers

» Program understanding

« Semantic preprocessing:
— Model checking
— Automated test generation

* Program verification

Program Verification

» Check that every operation of a program
will never cause an error (division by zero,
buffer overrun, deadlock, etc.)

« Example:
int a[1000];
for (i = 0; i < 1000; i++) {
safe operation — afi]l = . ; // 0 <= i <= 999
} t |
buffer overrun — ali]l = o // i = 1000;

I

]

Incompleteness of Program Analysis

» Discovering a sufficient set of properties
for checking every operation of a program
is an undecidable problem!

- False positives: operations that are safe
in reality but which cannot be decided safe
or unsafe from the properties inferred by
static analysis.

Precision versus Efficiency e

: number of program operations that
can be decided safe or unsafe by an analyzer.

» Precision and computational complexity
are strongly related

« Tradeoff precision/efficiency: limit in the
average precision and scalability of a
given analyzer

» Greater precision and scalability is
achieved through specialization

&

Specialization

« Tailoring the program analyzer algorithms
for a specific class of programs (flight
control commands, digital signal
processing, etc.)

» Precision and scalability is guaranteed for
this class of programs only

» Requires a lot of try-and-test to fine-tune
the algorithms

» Need for an open architecture

S
Soundness

« What guarantees the soundness of the analyzer
results?

+ In dataflow analysis and type inference the
soundness proof of the resolution algorithm is
independent from the analysis specification

» An independent soundness proof precludes the
use of test-and-try techniques

» Need for analyzers correct by construction

&

Abstract Interpretation

A general methodology for designing static
program analyzers that are:
— Correct by construction
— Generic
— Easy to fine-tune

» Scalability is difficult to achieve but the
payoff is worth the effort!

Approximation

The core idea of Abstract Interpreta’uon is the

formalization of the notion of

An approximation of memory configurations is first
defined

Then the approximation of all atomic operations
The approximation is automatically lifted to the
whole program structure

The approximation is generally a scheme that

Aononde nn enmao nthaor narame
GCpPCiiUo U oUnic Ui paraiiic

approximations

Overview of Abstract lnterpretation'

Start with a formal specification of the program
semantics (the concrete semantics)

Construct abstract semantic equations w.r.t. a
parametric approximation scheme

Use general algorithms to solve the abstract
semantic equations

Try-and-test various instantiations of the
approximation scheme in order to find the best fit

The M

ethodology of Abstract
Interpretation

Methodology

Concrete
Semantics
A 2
Collecting
Semantics
i i v
i § S ot D .
u Abstract | Partitioning
I Domain I
i i v N N
Iterative
! ! Abstract '
i i %;naﬂtiC&; “ Resolution
| Abstract : - - Algorithms
1 Domain 1

Lattices and Fixpoints

A lattice (L, E, 1, U, T, N) is a partially ordered
set (L, E) with:
— Least upper bounds (u) and greatest lower
bounds (u) operators
— A least element “bottom”: 1
— A greatest element “top”: T
L is complete if all least upper bounds exist
A fixpoint X of F: L — L satisfies F(X) = X
We denote by lip F the least fixpoint if it exists

&

Fixpoint Theorems

» Knaster-Tarski theorem: If F: L — L is
monotone and L is a complete lattice, the set of
fixpoints of F is also a complete lattice.

» Kleene theorem: If F: L — L is monotone, L is a
complete lattice and F preserves all least upper
bounds then lfp F is the limit of the sequence:

FO = 1
Foor = F(F,)

Methodology

Abstract
Domain

Abstract
Domain

Concrete
Semantics

y

Collecting

Semantics

A

| Partitioning I

Abstract

Semantics

bB U A LEAR AL A WS

Iterative
Resolution
Algorithms

Concrete Semantics

&

Small-step operational semantics: (X, —)

S = (|program point , [env]>

S

%

S

Example:

Ut W B P

n=20;

while n < 1000 do
n+ 1;

n =
end
exit

(I,n=>Q)—>Z,n=0->3n=0—->n=1)

Undefined value

- Z,n=1)—>..—>(5 n= 1000)

Control Flow Graph

1 n=20; -~
n =
2 while n < 1000 do -------->»
n = 1000 n < 1000
3 n=n+1; -
n=n+1
4 end -------]

Transition Relation

0]
Control flow graph: ®—p'®

Operational semantics: (D, €) - (D, [op])

/

Semantics of op

10

Concrete
Semantics
Collecting
Tuner: Semantics
nners
oo -
Abstract ' l Partitioning I
Domain i
[terative
: Abstract Resoluti
* Semantics | csotution
Abstract qJ Algorithms
Domain -
]
1

Collecting Semantics

&

The collecting semantics is the set of
observable behaviours in the operational
semantics. It is the starting point of any
analysis design.

The set of all descendants of the initial state

The set of all descendants of the initial state
that can reach a final state

The set of all finite traces from the initial state

The set of all finite and infinite traces from the
initial state

etc.

11

Which Collecting Semantics?

 Buffer overrun, division by zero, arithmetic
overflows: state properties

» Deadlocks, un-initialized variables: finite
trace properties

» Loop termination: finite and infinite trace
properties

&

State properties

The set of descendants of the initial state 8-

S={sls, =>..—>s}

Theorem: F:(p&),) — (pE),)

F©S)={s,} u{s'ldse S:s—s'}

S=IfpF

12

Example
l1: n=0;
2: while n < 1000 do
3: n=n+1;
4: end
5: exit

S={(l,n=0),(2,n=0),(3,n=0),4n=1),
2,n= 1), ..., {5, n = 1000))

Computation

*FO=02

« F1 ={(1,n=>Q)}

« F2 = {{1,n=>Q), (2,n=0) }

* F3 ={(1,n=>Q), (2,n=>0), (3,n=0) }

* F4 = {{1,n=>0), (2,n=0), (3,n=0), (4,n=>1)}

13

Methodology
Concrete
Semantics
Collecting
Tuners Semantics
nners
e ey
§ Abstract Partitioning_j
! Domain i
: t St ive
: 1 Abstract R;E‘jr‘lltig ©
U i Semantics | esotution
Abstract qJ Algorithms
Domain
! E
1
Partitioning

We partition the set S of states w.r.t. program

points:

c =3 95,8..08%,
S={keSzlk=i)

hd F(S«E, - Sl”i)i = {S' = Si | HJ HS = SJ S — S'}
« F(S,, ..., S,) ={(, lopl &) | DBD = CFG (P)}

N F(Si’ e Sﬂ)g = {SO}

14

Hlustration

(i, Top] e]){“‘f
(i, Lopl &)

Semantic Equations

* Notation: E; = set of environments at
program point |

e Cuectoarm nf camana in armiintinne
VYyolTlil VI oTliialiuw cyualtiviio
E=U{ [op] E D ® e CFG (P) }

 Solution of the system =S =Ifp F

15

Example
1 n = O,-
2: while n < 1000 do
3: n=n+1;
4: end
5 exit
E ={n=Q}
E,=[n =0] E UE,

E.= E, N], 999]
=[n=n+ 1] E3
= E, m [1000, +oof

E,
E;

Example
E ={n=Q} -
1: n = 0;
E2+ [whizeOn E£1
3: n=n+ E
4 end
ES= EXH J-c0, 999]
E,=[n=n+ 1] E

16

Other Kinds of Partitioning

w

* In the case of collecting semantics of

traces:

— Partitioning w.r.t. procedure calls: context

sensitivity

— Partitioning w.r.t. executions paths in a

procedure: path sensitivity
— Dynamic partitioning (Bourdoncle)

Methodology

Concrete
Semantics

v
Collecting
Semantics

A

l Partitioning

Abstract
Domain

J Abstract
I Semantics

[terative
Resolution
Algorithms

i
i
.
i
}
}
Abstract !
. . i
Domain ;

17

Approximation

Problem: Compute a sound approximation S*
of S

S c S

Solution: Galois connections

&

Galois Connection

L1’ L2 two lattices Abstract domain

v
L,9 : L, =)
04

c VXVy:a(X)fy & xcv(y)

« VxVy:xcyoa(x) & 0oyY(y)<y

18

Fixpoint Approximation e
0oFo Y
L2 2
Y o
L, - L,

IflpF cy(fpooFovy)

Abstracting the Collecting Semantit?

* Find a Galois connection:
Y

(PE),)

~
™~
Ery
-
IN
~—’

(3
fi i

ol

» Find a function: c«oFoy < F*

Partitioning = Abstract sets of environments

19

Abstract Algebra

* Notation: E the set of all environments
« Galois connection:

i
(9(B), 9 (E%, <)

o

« U, N approximated by U*, n*
« Semantics [op] approximated by [op] *

oo [opl oy < [opl #

&

Abstract Semantic Equations

n = 0;

1:

2: while n < 1000 do
3: n=n+1;

4: end

5: exit

Ef= a(ln=Q))
Ef=[n = o]l *EfU'E/
E.f= E ¥ 0¥ o (J-e0, 999])
E4#= [n =n + 1] #E3#
Ef= E* n* o ([1000, +eo[)

20

Methodology

Concrete
Semantics
y
Collecting
S Semantics
Miners
. oy
; Abstract | Partitioning |
i Domain i
i f y I oy
{eralive
I I Abstract] .
i g , . “ Resolution
Semantics)
Abstract] Algorithms
Domain)
I
1

Abstract Domains

&

Environment: X = v, y => w, ...
Various kinds of approximations:

ntervals (nonrelational):
Xx=[a, b], y=|[a', Db, ..
Polyhedra (relational):

X+y-2z <10, ...

y-x <5, z-y <10, ..

Difference-bound matrices (weakly relational):

21

Example: intervals

n=0;

while n < 1000 do
n=n+1;

end

exit

U1k L N =

* lteration 1: E,*=[0,0
* lteration 2: E, I = [0, 1
* Iteration 3: E, # =[0, 2

]
]
]
« lteration 4: E, # = [0, 3]

Problem

&

How to cope with lattices of infinite height?

Solution: automatic extrapolation operators

22

Methodology

Concrete
Semantics
y
Collecting
S Semantics
Miners
. oy
; Abstract | Partitioning |
i Domain i
i f y I T
{eralive
I ! Abstract .
i g . . “ Resolution
Semantics)
Abstract] Algorithms
Domain)
I
1

Widening operator

&

Lattice (L, <): V:LXL —>L

 Abstract union operator:

VXVy: x<xVy & y<xVy

- Enforces convergence: (x.), .,

Yo = %o
yn+1 = ynVXn+1

(Yn)nso I8 Ultimately stationary

23

Widening of intervals

[a, b] V [a', b']

. If a<a' then a else -oo

. If b'<Db then b else +

widening

lteration with widening

1: n = 0;

2: while n < 1000 do
3: n=n+1;

4: end

5: exit

B =€,V ([n = o] #EH, U/ EH,)

Iteration 1 (union): E,* =10, 0]
Iteration 2 (union): E* =0, 1]
Iteration 3 (widening): Ez# = [0, +oo] = stable

Imprecision at loop exit

&

1: n = 0;

2: while n < 1000 do

3: n=n+1;

4: end

5: -ewnies t[n] = 0; //t has 1500 elements

—~ False positive!!!

. B = [1000, +oof

. The information is present in the equations

25

Narrowing operator

Lattice (L, <): A:LxL—>L

. Abstract intersection operator:
VxVy: XxXNy<xAy

- Enforces convergence: (x) .,

Yo = %o
yn+1 = ynAXn+1

(Yn)nso I8 Ultimately stationary

Narrowing of intervals

[a, b] A [a', b']

. If a=-00 then a' else a

« If b=+ then b' else b

> Refine open bounds

26

Narrowing and Fixpoint

&

lteration with narrowing

1 n=0;

2 while n < 1000 do
3: n=n+1;

4 end

5 exit; t[n] = 0;

B =ED,A(Ln = o] *EH, U ES))

Beginning of iteration: E* = [0, +oo]
Iteration 1: E *= [0, 1000] = stable
Consequence: E.* = [1000, 1000]

27

Methodology

Concrete
Semantics
{
Collecting
Semantics
Tuners
i
] | \ 2
| | ——
, Abstract | Partitioning |
i Domain I
i H y
! I Abstract
! t Semantics
Abstract |
i .
I Domain I
1 I
1

Iterative
Resolution
Algorithms

Tuning the abstract domains

. Intervals:

1: n = 0;

2: k = 0;

3: while n < 1000 do
4: n=n+1;

5: k =k + 1;

6: end

7: exit

E,*=(n= [0, 1000], k = [0, +oo[)

. Convex polyhedra or DBMs:

E#=(0<n<1000, 0<k<1000, n-k=0)

28

Comparison with Data Flow
Analysis

Data Flow Framework

* Forward Data Flow Equations
Init ,B =entry
in(B) =1(F, (in(B)) .otherwise
[PePred(B)
« Lis a lattice
* in(B) e L is the data-flow information on entry to B

* [nitis the appropriate initial value on entry to the
program

+ Fgis the transformation of the data-flow information
upon executing block B

* N models the effect of combining the data-flow
information on the edges entering a block

29

Data-Flow Solutions

+ Solving the data-flow equations computes the meet-
over-all-paths (MOP) solution

MOP(B)= N Fp(lnit) for B=entry,Bl,...,Bn,exit
pePath(B)

If F5 is monotone, i.e.,

EOCNYSE®NEG)
then MOP < MFP (maximum fixpoint)

If Fg is distributive, i.e.,

then MOP = MFP

&

Typical Data-Flow Analyses

Reaching Definitions

Available Expressions

Live Variabies
Upwards-Exposed Uses
Copy-Propagation Analysis
Constant-Propagation Analysis
Partial-redundancy Analysis

30

Reaching Definitions

» Data-flow equations:
Vi: RCHin(i) = U (GEN(j) u (RCHin(j) n PRSV(j)))
where
— PRSV are the definitions preserved by the block
— GEN are the definitions generated by the blocks

» This is an iterative forward bit-vector problem
— lterative: it is solved by iteration from a set of initial values
— Forward: information flows in direction of execution

— Bit-vector: each definition is represented as a 1 (may
reach given point) or a 0 (it does not reach this point)

&

» Classical DFA is stated in terms of properties whereas Al
is usually stated in terms of models, whence the duality
in the formulation.

* In classical DFA the pr
it

Al versus classical DFA

bepdldlEIy Wllﬂledb itC
analysis in Al.

* Added benefits of Al:
— Approximation of fixpoints in Al
* Widening operators
» Narrowing operators
— Abstraction is explicit in Al
 Galois connections

» Can build a complex analysis as combination of
basic, already-proved-correct, analyses

oof of soundnes ust
omes from th

('D
O
C)
-
U)
=
C

31

Annotated Bibliography

References

.

The historic paper:

~ Patrick Cousot & Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programmin Lan uages pages 238—252, Los Angeles, California,
1977. ACM Press, New York, NY, USA

» Accessible introductions to the theory:
-~ Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10,
pages 303—342, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.
~ Patrick Cousot & Radhia Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2—3):103—179, 1992.

+ Beyond Galois connections, a presentation of relaxed frameworks:

- Patrick Cousot & Radhia Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511—547, August 1992.

« A thorough description of a static analyzer with all the proofs (difficult to read):
- Patrick Cousot. The Calculational Design of a Generic Abstract Interpreter. Course
notes for the NATO International Summer School 1998 on Calculational System
Design. Marktoberdorf, Germany, 28 July—9 au%Jst 1998, organized by F.L.
Bauer, M. Broy, E.W. Dukstra D. Gries and C.A.R. Hoare.

]
References

The abstract domain of intervals:

— Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of
Programs. In B. Robinet, editor, Proceedings of the second international symposium
on Programming, Paris, France, pages 106—130, april 13-15 1976, Dunod, Paris.

The abstract domain of convex polyhedra:

— Patrick Cousot & Nicolas Halbwachs. Automatic discover% of linear restraints among
variables of a program. In Conference R ecord of the Fifth Annual ACM SIGPLAN-
SIGACT Symposium on Princg)/es of Program ming Languages, pages 84—97,
Tucson, Arizona, 1978. ACM Press, New York, NY, USA.

Weakly relational abstract domains:

— Antoine Miné. The Octagon Abstract Domain. In Analysis, Slicing and Transformation
gﬁ'ta%fgWorking Conference on Reverse Engineering), October 2001, IEEE, pages

— Antoine Miné. A New Numerical Abstract Domain Based on Difference-Bound
Matrices. In Program As Data Objects I, May 2001, LNCS 2053, pages 155-172.

Classical data flow analysis:

fffff Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

